Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia.

نویسندگان

  • K Furuyama
  • S Sassa
چکیده

The first and the rate-limiting enzyme of heme biosynthesis is delta-aminolevulinate synthase (ALAS), which is localized in mitochondria. There are 2 tissue-specific isoforms of ALAS, erythroid-specific (ALAS-E) and nonspecific ALAS (ALAS-N). To identify possible mitochondrial factors that modulate ALAS-E function, we screened a human bone marrow cDNA library, using the mitochondrial form of human ALAS-E as a bait protein in the yeast 2-hybrid system. Our screening led to the isolation of the beta subunit of human ATP-specific succinyl CoA synthetase (SCS-betaA). Using transient expression and coimmunoprecipitation, we verified that mitochodrially expressed SCS-betaA associates specifically with ALAS-E and not with ALAS-N. Furthermore, the ALAS-E mutants R411C and M426V associated with SCS-betaA, but the D190V mutant did not. Because the D190V mutant was identified in a patient with pyridoxine-refractory X-linked sideroblastic anemia, our findings suggest that appropriate association of SCS-betaA and ALAS-E promotes efficient use of succinyl CoA by ALAS-E or helps translocate ALAS-E into mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2).

Mutations in the erythroid-specific aminolevulinic acid synthase gene (ALAS2) cause X-linked sideroblastic anemia (XLSA) by reducing mitochondrial enzymatic activity. Surprisingly, a patient with the classic XLSA phenotype had a novel exon 11 mutation encoding a recombinant enzyme (p.Met567Val) with normal activity, kinetics, and stability. Similarly, both an expressed adjacent XLSA mutation, p...

متن کامل

Murine erythroid 5-aminolevulinate synthase: Adenosyl-binding site Lys221 modulates substrate binding and catalysis

5-Aminolevulinate synthase (ALAS) catalyzes the initial step of mammalian heme biosynthesis, the condensation between glycine and succinyl-CoA to produce CoA, CO2, and 5-aminolevulinate. The crystal structure of Rhodobacter capsulatus ALAS indicates that the adenosyl moiety of succinyl-CoA is positioned in a mainly hydrophobic pocket, where the ribose group forms a putative hydrogen bond with L...

متن کامل

Deficient Heme and Globin Synthesis in Embryonic Stem Cells Lacking the Erythroid-Specific d-Aminolevulinate Synthase Gene

The erythroid-specific isoform of d-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells, and ALAS-E gene mutations are known to be responsible for x-linked sideroblastic anemia. To study the role of ALAS-E in erythroid development, we prepared mouse embryonic stem (ES) cells carrying a disrupted ALAS-E gene and examined the effect of the lack of AL...

متن کامل

Deficient heme and globin synthesis in embryonic stem cells lacking the erythroid-specific delta-aminolevulinate synthase gene.

The erythroid-specific isoform of delta-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells, and ALAS-E gene mutations are known to be responsible for x-linked sideroblastic anemia. To study the role of ALAS-E in erythroid development, we prepared mouse embryonic stem (ES) cells carrying a disrupted ALAS-E gene and examined the effect of the lack o...

متن کامل

Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.

Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2000